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Abstract. Much recent research has explored fault-tolerance mechanisms in-
tended for current and future extreme-scale systems. Evaluations of the suitabil-
ity of checkpoint-based solutions have typically been carried out using relatively
uncomplicated computational kernels designed to measure floating point perfor-
mance. More recent investigations have added scaled-down “proxy” applications
to more closely match the composition and behavior of deployed ones. How-
ever, the information obtained from these studies (whether floating point perfor-
mance or application runtime) is not necessarily of the most value in evaluating
resilience strategies. We observe that even when using a more sophisticated met-
ric, the information available from evaluating uncoordinated checkpointing using
both microbenchmarks and proxy applications does not agree. This implies that
not only might researchers be asking the wrong questions, but that the answers to
the right ones might be unexpected and potentially misleading. We seek to open a
discussion on whether benchmarks designed to provide predictable performance
evaluations of HPC hardware and toolchains are providing the right feedback for
the evaluation of fault-tolerance in these applications, and more generally on how
benchmarking of resilience mechanisms ought to be approached in the exascale
design space.

1 Introduction

Issues surrounding reliability in extreme-scale systems are now attracting substantial
research attention. Increasing size, component counts, and complexity of modern and
projected systems are presenting unpalatable reliability implications for applications.
Some estimates point to exascale systems suffering multiple failures per hour, seriously
hindering application throughput and thereby squandering considerable hardware and
software investment.

The HPC community has arrived at this untenable position largely due to a strong
emphasis on peak CPU performance as an indicator of design and deployment success.
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The growth in popularity of the Top 500 list, for example, has been extremely valuable
as a means of increasing the visibility of issues in early extreme-scale system design.
While understandable and even beneficial, this emphasis on floating point performance
provides little information on how to design applications and system software to deal
with the fast-approaching reliability crunch. The disconnect is underscored by the com-
mon practice of generating results for the Top 500 list using application runs that avoid
the defensive resilience measures (i.e. checkpointing) that are pervasive in front-line
HPC applications.

This reliability information deficit will greatly hinder the designers of HPC sys-
tems and applications. Similarly to how power and heat constraints are shaping de-
sign decisions for exascale systems, sustainable HPC design will need to accommodate
fault-tolerance as a first-class objective. Evaluation of systems and their applications
must become more sophisticated in order to properly inform the design process. Current
evaluations of both systems and software rely strongly on CPU performance-oriented
benchmarks such as the NAS Parallel Benchmarks suite. Conceived in an HPC environ-
ment with infrequent failures, such benchmarks will have decreasing utility. Another
consideration is that such benchmarks do not reflect the behavior of front-line HPC ap-
plications. Several well-known applications consist of compositions of computational
kernels designed to solve different stages of large problems, and their approaches to
resiliency are driven by the nature of those compositions. Their checkpointing strate-
gies change based on application state volatility in each stage of the problem (i.e. the
behavior of the computational kernel in question).

Standardized, repeatable benchmarks and problem sets that reflect deployed appli-
cation behavior and yield a more appropriate metric could alleviate these problems.
Recent studies of resilience issues have investigated efficiency, defined as the propor-
tion of application runtime spent on the problem rather than on fault-tolerance activities
such as checkpoint/restart, as a more informative metric. Efficiency becomes increas-
ingly appropriate as “effective” performance measurements are reduced by increasing
system fault rates.

With this paper, we hope to encourage a discussion on useful methods of obtain-
ing information on the application efficiency made possible by architecture, system
software, and fault-tolerance design choices. We observe that correlations in efficiency
that might be expected between computational kernels from the NAS benchmarks set,
“mini-apps” from the Sandia Mantevo project, and front-line scientific codes are not
strongly apparent. We believe this is an appropriate departure point on how benchmark-
ing should be considered in a new HPC regime where resilience concerns trump CPU
performance. A more complete evaluation of benchmarking in a comprehensive set of
fault-tolerance scenarios as well as proposals for evolving existing benchmark sets into
a standard fault-tolerance benchmarking suite remain for future work. Our preliminary
study indicates, however, that a discussion among the HPC resilience community on
how to properly consider the behavior of current and proposed extreme-scale systems
and applications is both appropriate and timely.



2 Related Work

This section briefly discusses the context of our work in checkpointing and benchmark-
ing research.

2.1 Checkpointing

The most prevalent method of defensive fault-tolerance mitigation in modern applica-
tions, coordinated checkpointing periodically writes global application or system state
to stable storage [1]. Consistent application state snapshots are enforced through global
barrier synchronization. When a process fails, all application processes can then be
restarted from a known-good, globally consistent state. Algorithmic approaches bor-
rowed from the distributed computing domain [1] allow applications to generate con-
sistent checkpoints without using barriers, avoiding increasingly expensive global syn-
chronization.

Other techniques from distributed computing have given rise to uncoordinated or
asynchronous checkpointing [2,3,4,5,6,7,8,9]. In these systems, nodes do not synchro-
nize when they checkpoint, but they also keep a log of their sent messages on stable
storage. Nodes restoring from local asynchronous checkpoints can then reconstruct a
local state consistent with the application global state by replaying inbound messages
from other nodes (using their logs).

We are not strictly concerned here with contributing to the active research compar-
ing and contrasting these two approaches. However, we note that an informed choice
between them requires knowledge of the application: how much state is maintained
locally, shared with other cooperating nodes, or is easily reconstructed and therefore
a candidate for leaving out of a checkpoint. A benchmarking suite that allows such
choices by more closely reflecting the composition and behavior of complex applica-
tions is more likely to provide guidance on which checkpointing method is appropriate.

2.2 Benchmarks for HPC

Several benchmarking suites are widely used in the high-performance computing com-
munity. The Top500 list, itself an evolution of the Mannheim Supercomputer Statistics
lists of the late 1980s, introduced the use of the LINPACK [10] linear equation solver
as a standard, repeatable benchmark tool. The growing popularity of the Top500 list
arguably also led to a reductive emphasis on floating point performance as a design
goal, although at the time the available headroom in HPC performance was so great as
to make this reasonable.

Finding LINPACK an unsuitable representative for their applications, the designers
of the NAS Parallel Benchmarks [11] created first a set of specifications and later a set
of reference implementations of a group of small benchmark kernels. Although provid-
ing a more nuanced view of supercomputing performance through the aggregation of
several types of computational problems, the emphasis on floating point performance
persisted.



More recent efforts have addressed the need to represent computational tasks from
deployed applications through the creation of proxy applications. Comprising sim-
plified versions of those applications able to execute scaled-down problem instances,
benchmark collections from various organizations such as NERSC [12], Sandia [13]
and Argonne [14] have refined performance evaluation still further. As these approxi-
mations of deployed application behavior become more popular, realistic evaluations of
resilience strategies and effects are being pursued through both direct experimentation
and simulation [15]. We submit that an emphasis on more sophisticated metrics such as
efficiency as well as a more comprehensive consideration of resilience approaches are
logical next steps in this evolution.

3 Comparing Benchmarks to Applications

In this section we investigate the correlation between efficiency profiles of a mixed
set of microbenchmark/proxy application/full application combinations using uncoor-
dinated asynchronous checkpointing. We made these choices because: 1) in a coordi-
nated scheme, since checkpoint durations and intervals are fixed, the behavior of bench-
marks and applications would be similar; 2) alternatives to coordinated checkpointing
are necessary for exascale systems; and 3) it seems necessary to examine alternatives to
benchmarks (such as NAS) that were designed years ago for coordinated checkpointing
environments.

We used a modified message trace-driven simulator [16] to measure application
efficiency (a discussion of our modifications and validation of this simulation frame-
work can be found in [15]). Using this framework we found that, using uncoordinated
checkpointing, the choice of benchmark can be significant, as codes computing essen-
tially the same problem produced varying performance results. We argue that these
results do not necessarily imply the superiority of any particular benchmark; rather,
they illustrate that, as different checkpointing approaches are dictated by increasing
application/system scale and the associated reliability concerns, evaluating application
efficiency may not be as straightforward as evaluating floating point performance.

3.1 Simulation Results & Discussion

Figures 1 through 3 show the uncoordinated checkpoint performance of a number
of common HPC microbenchmark applications using the simulator described previ-
ously [15]. In each of these figures we assume a two minute checkpoint interval and
a one second checkpoint commit time (time to write a checkpoint). For simplicity we
assume there are no failures in the each of these runs, but note that failures should not
change the shapes of the curves shown. Additionally, we assume a message logging pro-
tocol to keep all checkpoints consistent but attribute no runtime overhead to this logging
protocol. We believe this is a reasonable assumption for send-deterministic applications
given recent work on optimizing message log sizes [17,18,19,20]. The “D” size class of
NAS benchmarks were used, and other problem instances were sized accordingly.

Figure 1 illustrates the efficiency of two popular conjugate gradient solvers, NAS-
CG and the mini-application HPCCG [21]. From this figure, we see that the overhead of
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Fig. 1. Application Efficiency of NAS-CG and HPCCG with uncoordinated checkpointing

uncoordinated checkpointing varies greatly between these two workloads even though
they are solving similar problems. Most importantly, given that node counts are ex-
pected to increase significantly in future systems, the trends suggest that the difference
in performance between these two workloads increases with node count. In addition to
the efficiency differences, the floating point performance of these two workloads also
varies greatly. Using the same compiler, optimization flags, platform, and physical ap-
plication layout, HPCCG executes 100x more flops/second than does CG.
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Fig. 2. Application Efficiency of the NAS-MG and AMG with uncoordinated checkpointing.

Similarly, Figure 2 shows the efficiency of NAS-MG and AMG from the ASC Se-
quoia Benchmark suite [22], two popular multi-grid linear system solvers used in many



DOE simulation workloads. Again, we see each of these workloads behave very dif-
ferently while solving a similar problem. Also, again the difference in performance
increases dramatically as node count increases.
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Fig. 3. Application Efficiency of miniMD and LAMMPS with uncoordinated checkpointing.

Finally, Figure 3 contains the efficiency results for the application LAMMPS [23,24]
and the Mantevo mini-application molecular dynamics code miniMD [21]. Of the com-
parisons shown in this paper, miniMD and LAMMPS behave most similarly with unco-
ordinated checkpointing. This fact is not a surprise given these two workloads share a
significant amount of source code and an overlap in the development teams. However,
even with these workloads sharing considerable portions of source code, there exists a
significant difference in performance with uncoordinated checkpointing.

As we see from this section, applications computing very similar problems and even
using very similar algorithms can respond to a resilience mechanism (in this case un-
coordinated checkpointing) in very different ways. In an effort to better understand the
differences, we next examine each application’s communication pattern. In Figure 4 we
show a comparison of the most frequently called MPI functions for each of the work-
loads. In this figure, we only include MPI functions which contribute to a significant
portion of the total function count. From the figure we see that, as could be expected,
for NAS-CG and HPCCG as well NAS-MG and AMG these benchmarks compute their
respective problems in a very different manner, leading to their respective differences
in efficiency. In contrast, the miniMD and LAMMPS MPI function profiles look very
similar.

We believe these results point to two important issues when evaluating resilience for
extreme-scale systems. First, as opposed to coordinated checkpointing in which check-
points can be taken at known quiesced synchronization points, under uncoordinated
checkpointing application communication patterns can significantly affect application
efficiency. Second, understanding how communication patterns and other non-local op-



NAS-CG HPCCG
MPI Send() 33.33% MPI Send() 19.97%
MPI Irecv() 33.33% MPI Irecv() 19.97%
MPI Wait() 33.33% MPI Wait() 19.97%

MPI Allreduce() 19.97%
(a) NAS-CG and HPCCG

AMG NAS-MG
MPI Iprobe() 49.63% MPI Irecv() 33.33%
MPI Testall() 49.63% MPI Wait() 33.33%
MPI Wait() 0.36% MPI Send() 32.88%

(b) AMG and NAS-MG

miniMD LAMMPS
MPI Send() 33.81% MPI Wait() 30.56%
MPI Irecv() 32.23% MPI Send() 30.56%
MPI Wait() 32.23% MPI Irecv() 30.56%

(c) miniMD and LAMMPS

Fig. 4. Pairwise comparison of the most frequently-called MPI routines in each pair of programs
as percentages of the total number of MPI calls.

erations impact performance is important in designing algorithms for faulty environ-
ments. These results point to a need to consider resilience a first-class concern in de-
signing algorithms for future systems where failures will be common, as opposed to the
resilience-as-an-afterthought approach that has been used successfully in the past with
coordinated checkpointing.

4 Application vs. System Resilience

The choice between application-directed and system-directed resilience action has been
explored in some detail. Our results in the previous section imply that appropriate re-
silience strategy choices are likely to be highly application dependent upon informa-
tion not sufficiently exposed by microbenchmarks. Similarly, delegating responsibility
for resilience to the operating system also disregards knowledge and context and can
greatly affect performance measurements. This can take several forms:

– System-directed checkpointing ignores significant work that real applications do
for their own resilience. Furthermore, system checkpoints are typically larger and
(since they are conducted without input from the application) may contain redun-
dant or stale data.

– Real applications have evolved downstream ecosystems based on consumption of
checkpoint products such as telemetry, analysis/visualization and steering processes.
System-directed checkpointing that assumes complete control of resilience policy
decisions can interfere with these downstream processes and reduce their utility.



Ideally, the distinction between application- and system-provided resilience would
become much less stark. System resilience utilities, as opposed to exercising complete
control over policy decisions, should instead act more as resource monitors (as other
operating system constructs such as schedulers and memory managers do). In such an
arrangement, system checkpointing libraries would expose hardware resilience infor-
mation and allow collaboration between applications and the system. This would allow
applications to continue to satisfy downstream consumers of resilience data as well as
provide a measure of fine-grain control to future benchmark suites.

5 Concluding Remarks

This work was motivated by our growing awareness of a disconnect between the in-
creasing emphasis on resilience issues in exascale systems research and the nature of the
tools being used to evaluate the responses to those issues. Classical benchmarking tools,
while entirely appropriate for the era in which they were designed, will be of decreas-
ing utility in the face of current exascale design trends. As we have discussed, several
“next-generation” benchmarking approaches are under development which promise a
more nuanced picture of the performance of real applications under the new constraints
implied by those trends. We believe, however, that resilience will be a fundamental is-
sue for exascale, and that a community-wide discussion of what kinds of benchmarks
and metrics are most valuable is both necessary and timely.

The establishment and popularity of the Top500 list clearly had beneficial results,
driving advances in hardware, system software and application design and implemen-
tation which in turn have had numerous trickle-down effects for HPC research. Other
“500” lists have emerged, each lending visibility to specific areas: energy consump-
tion and sustainability are highlighted by the Green500 (www.green500.org), and
the different HPC design decisions necessary to support efficient graph-based analytics
algorithms by the Graph500 (www.graph500.org). Resilience is becoming widely
accepted as a core design goal for HPC systems, roughly paralleling the path that en-
ergy efficiency concerns followed to prominence. While it may strike some as facetious,
a “Resilient500” list could have similar beneficial effects: addressing a core emerging
design concern (as does the Green500) by spurring an interested community to estab-
lish commonly accepted information-rich metrics and benchmarks (as the Graph500
organizers are doing).

We also note that important vehicles for this type of discussion are already un-
derway. The DOE ASCR Co-Design Centers [25] (ExaCT [26], ExMatEx [27], CE-
SAR [28]) are each charged with an application area important for the future of exascale
system design. In particular, these efforts will focus on the fusion of scientific problem
requirements (which we have shown can have notable impact in performance evalu-
ation) with architectural and system software concerns (providing visibility to hard-
ware resilience issues as well as propagation of resilience information throughout the
software stack). Their unique charter makes the Co-Design Centers an ideal venue for
efforts to further develop and standardize resilience-aware benchmarking.

www.green500.org
www.graph500.org
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